

    
      
          
            
  
Welcome to Find Dupes Fast’s documentation!




[image: Code Health]
 [https://landscape.io/github/ssokolow/fastdupes/master][image: Documentation Status]
 [https://readthedocs.org/projects/fastdupes/?badge=latest][image: 'Stories in Ready']
 [https://waffle.io/ssokolow/fastdupes]Find Dupes Fast (A.K.A. fastdupes.py) is a simple script which identifies
duplicate files several orders of magnitude more quickly than
fdupes [https://packages.debian.org/stable/fdupes] by using smarter algorithms.

It was originally inspired by Dave Bolton’s dedupe.py [http://davebolton.net/blog/?p=173] and Reasonable
Software’s NoClone [http://noclone.net/] and has no external dependencies beyond the Python 2.x
standard library.

Full API documentation [http://fastdupes.readthedocs.org/en/latest/apidocs.html] is available on
ReadTheDocs and, pending [https://github.com/ssokolow/fastdupes/issues/24]
proper end user documentation, the --help option is being constantly
improved.


Algorithm

The default mode of operation is as follows:


	The given paths are recursively walked (subject to --exclude) to
gather a list of files.

	Files are grouped by size (because stat() is fast compared to
read())
and single-entry groups are pruned away.

	Groups are subdivided and pruned by hashing the first 16KiB of each
file.

	Groups are subdivided and pruned again by hashing full contents.

	Any groups which remain are sets of duplicates.



Because this multi-pass approach eliminates files from consideration as early
as possible, it reduces the amount of disk I/O that needs to be performed by
at least an order of magnitude, greatly speeding up the process.

Here are the final status messages from a cold-cache run I did on my machine to
root out cases where my manual approach to backing up things that don’t change
left duplicates lying around:

$ python fastdupes.py /srv/Burned/Music /srv/Burned_todo/Music /srv/fservroot/music
Found 72052 files to be compared for duplication.
Found 7325 sets of files with identical sizes. (72042 files examined)
Found 1197 sets of files with identical header hashes. (38315 files examined)
Found 1197 sets of files with identical hashes. (2400 files examined)





Those ... files examined numbers should show its merits. The total wall
clock runtime was 280.155 seconds.

Memory efficiency is also kept high by building full-content hashes
incrementally in 64KiB chunks so that full files never need to be loaded
into memory.




Exact Comparison Mode

If the -E switch is provided on the command line, the final full-content SHA1
hashing will be omitted. Instead, all of the files in each group will be read
from the disk in parallel, comparing chunk-by-chunk and subdividing the group
as differences appear.

This greatly increases the amount of disk seeking and offers no benefits in
the vast majority of use cases. However, if you are storing many equally-sized
files on an SSD and their headers are identical but they do vary, the
incremental nature of this comparison may save you time by allowing the
process to stop reading a given file as soon as it becomes obvious that it’s
unique.

The other use for this (avoiding the risk of hash collisions in files that
have identical sizes and do not differ in their first 16KiB of data but
are different elsewhere) is such a tiny risk that very few people will need it.

(Yes, it’s a fact that, because files are longer than hashes, collisions are
possible... but only an astronomically small number of the possible
combinations of bytes are meaningful data that you’d find in a file on your
hard drive.)




The --delete option

Like fdupes, fastdupes.py provides a --delete option which produces
interactive prompts for removing duplicates.

However, unlike with fdupes, these prompts make it impossible to accidentally
delete every copy of a file. (Bugs excepted, of course. A full unit test suite
to ensure this behaviour is still on the TODO list.)


	The --delete UI asks you which files you’d like to keep and won’t
accept an empty response.

	Specifying a directory more than once on the command line will not result in
a file being listed as a duplicate of itself. Nor will specifying a directory
and its ancestor.

	A --symlinks option will not be added until safety can be
guaranteed.




The --prefer and --noninteractive options

Often, when deduplicating with --delete, you already know that files
in one directory tree should be preferred over files in another.

For example, if you have a folder named To Burn and another named
Burned, then you shouldn’t have to tell your deduplicator that files in the
former should be deleted.

By specifying --prefer=*/Burned on the command-line, you can skip the
prompts in such a situation while still receiving prompts for other files.

Furthermore, if you’d like a fully unattended deduplication run, include the
--noninteractive option and fastdupes will assume that you want to
keep all copies (do nothing) when it would otherwise prompt.

Finally, a --dry-run option is provided in case you need to test the
effects of a --delete setup without risk to your files.






Indices and tables


	Index

	Module Index

	TODO Note Index

	Search Page









          

      

      

    

  

    
      
          
            
  
API Documentation

Find Dupes Fast
By Stephan Sokolow (ssokolow.com)

A simple script which identifies duplicate files several orders of magnitude
more quickly than fdupes by using smarter algorithms.




Todo

Figure out how to do ePyDoc-style grouping here without giving up
automodule-level comfort.




	
fastdupes.CHUNK_SIZE = 65536

	Size for chunked reads from file handles






	
fastdupes.DEFAULTS = {'min_size': 25, 'exclude': ['*/.svn', '*/.bzr', '*/.git', '*/.hg'], 'delete': False}

	Default settings used by optparse [https://docs.python.org/2/library/optparse.html#module-optparse] and some functions






	
fastdupes.HEAD_SIZE = 16384

	Limit how many bytes will be read to compare headers






	
class fastdupes.OverWriter(fobj)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Output helper for handling overdrawing the previous line cleanly.


	
write(text, newline=False)

	Use \r to overdraw the current line with the given text.

This function transparently handles tracking how much overdrawing is
necessary to erase the previous line when used consistently.





	Parameters:	
	text (str) – The text to be outputted

	newline (bool) – Whether to start a new line and reset the length count.


















	
fastdupes.compareChunks(handles, chunk_size=65536)

	Group a list of file handles based on equality of the next chunk of
data read from them.





	Parameters:	
	handles – A list of open handles for file-like objects with
otentially-identical contents.

	chunk_size – The amount of data to read from each handle every time
this function is called.






	Returns:	Two lists of lists:


	Lists to be fed back into this function individually

	Finished groups of duplicate paths. (including unique files as
single-file lists)








	Return type:	(list, list)








Attention

File handles will be closed when no longer needed




Todo

Discard chunk contents immediately once they’re no longer needed








	
fastdupes.delete_dupes(groups, prefer_list=None, interactive=True, dry_run=False)

	Code to handle the --delete command-line option.





	Parameters:	
	groups (iterable) – A list of groups of paths.

	prefer_list – A whitelist to be compiled by
multiglob_compile() and used to skip some prompts.

	interactive (bool) – If False, assume the user wants to keep all copies
when a prompt would otherwise be displayed.

	dry_run (bool) – If True, only pretend to delete files.










Todo

Add a secondary check for symlinks for safety.








	
fastdupes.find_dupes(paths, exact=False, ignores=None, min_size=0)

	High-level code to walk a set of paths and find duplicate groups.





	Parameters:	
	exact (bool) – Whether to compare file contents by hash or by reading
chunks in parallel.

	paths – See getPaths()

	ignores – See getPaths()

	min_size – See sizeClassifier()






	Returns:	A list of groups of files with identical contents




	Return type:	[[path, ...], [path, ...]]












	
fastdupes.getPaths(roots, ignores=None)

	Recursively walk a set of paths and return a listing of contained files.





	Parameters:	
	roots (list of str) – Relative or absolute paths to files or folders.

	ignores (list of str) – A list of fnmatch [https://docs.python.org/2/library/fnmatch.html#module-fnmatch] globs to avoid walking and
omit from results






	Returns:	Absolute paths to only files.




	Return type:	list of str








Todo

Try to optimize the ignores matching. Running a regex on every
filename is a fairly significant percentage of the time taken according
to the profiler.








	
fastdupes.groupBy(groups_in, classifier, fun_desc='?', keep_uniques=False, *args, **kwargs)

	Subdivide groups of paths according to a function.





	Parameters:	
	groups_in (dict of iterables) – Grouped sets of paths.

	classifier (function(list, *args, **kwargs) -> str) – Function to group a list of paths by some attribute.

	fun_desc (str) – Human-readable term for what the classifier operates on.
(Used in log messages)

	keep_uniques (bool) – If False, discard groups with only one member.






	Returns:	A dict mapping classifier keys to groups of matches.




	Return type:	dict




	Attention:	Grouping functions generally use a set
groups as extra protection against accidentally counting a given
file twice. (Complimentary to use of os.path.realpath() [https://docs.python.org/2/library/os.path.html#os.path.realpath] in
getPaths())








Todo

Find some way to bring back the file-by-file status text








	
fastdupes.groupByContent(paths)

	Byte-for-byte comparison on an arbitrary number of files in parallel.

This operates by opening all files in parallel and comparing
chunk-by-chunk. This has the following implications:



	Reads the same total amount of data as hash comparison.

	Performs a lot of disk seeks. (Best suited for SSDs)

	Vulnerable to file handle exhaustion if used on its own.










	Parameters:	paths (iterable) – List of potentially identical files.


	Returns:	A dict mapping one path to a list of all paths (self included)
with the same contents.






Todo

Start examining the while handles: block to figure out how to
minimize thrashing in situations where read-ahead caching is active.
Compare savings by read-ahead to savings due to eliminating false
positives as quickly as possible. This is a 2-variable min/max problem.




Todo

Look into possible solutions for pathological cases of thousands
of files with the same size and same pre-filter results. (File handle
exhaustion)








	
fastdupes.groupify(function)

	Decorator to convert a function which takes a single value and returns
a key into one which takes a list of values and returns a dict of key-group
mappings.





	Parameters:	function (function(value) -> key) – A function which takes a value and returns a hash key.


	Return type:	
function(iterable) ->
    {key: set ([value, ...]), ...}













	
fastdupes.hashClassifier(paths, *args, **kwargs)

	Sort a file into a group based on its SHA1 hash.





	Parameters:	
	paths – See fastdupes.groupify()

	limit (__builtins__.int) – Only this many bytes will be counted in the hash.
Values which evaluate to False indicate no limit.






	Returns:	See fastdupes.groupify()












	
fastdupes.hashFile(handle, want_hex=False, limit=None, chunk_size=65536)

	Generate a hash from a potentially long file.
Digesting will obey CHUNK_SIZE to conserve memory.





	Parameters:	
	handle – A file-like object or path to hash from.

	want_hex (bool) – If True, returned hash will be hex-encoded.

	limit (int) – Maximum number of bytes to read (rounded up to a multiple of
CHUNK_SIZE)

	chunk_size (int) – Size of read() operations
in bytes.






	Return type:	str




	Returns:	A binary or hex-encoded SHA1 hash.








Note

It is your responsibility to close any file-like objects you pass
in








	
fastdupes.main()

	The main entry point, compatible with setuptools.






	
fastdupes.multiglob_compile(globs, prefix=False)

	Generate a single “A or B or C” regex from a list of shell globs.





	Parameters:	
	globs (iterable of str) – Patterns to be processed by fnmatch [https://docs.python.org/2/library/fnmatch.html#module-fnmatch].

	prefix (bool) – If True, then match() [https://docs.python.org/2/library/re.html#re.RegexObject.match] will
perform prefix matching rather than exact string matching.






	Return type:	re.RegexObject [https://docs.python.org/2/library/re.html#re.RegexObject]












	
fastdupes.print_defaults()

	Pretty-print the contents of DEFAULTS






	
fastdupes.pruneUI(dupeList, mainPos=1, mainLen=1)

	Display a list of files and prompt for ones to be kept.

The user may enter all or one or more numbers separated by spaces
and/or commas.


Note

It is impossible to accidentally choose to keep none of the
displayed files.







	Parameters:	
	dupeList (list) – A list duplicate file paths

	mainPos (int) – Used to display “set X of Y”

	mainLen (int) – Used to display “set X of Y”






	Returns:	A list of files to be deleted.




	Return type:	int












	
fastdupes.sizeClassifier(paths, *args, **kwargs)

	Sort a file into a group based on on-disk size.





	Parameters:	
	paths – See fastdupes.groupify()

	min_size (__builtins__.int) – Files smaller than this size (in bytes) will be ignored.






	Returns:	See fastdupes.groupify()








Todo

Rework the calling of stat() [https://docs.python.org/2/library/os.html#os.stat] to minimize the number of
calls. It’s a fairly significant percentage of the time taken according
to the profiler.











          

      

      

    

  

    
      
          
            
  
TODO Note Index


Todo

Figure out how to do ePyDoc-style grouping here without giving up
automodule-level comfort.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring of fastdupes, line 26.)


Todo

Discard chunk contents immediately once they’re no longer needed



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring of fastdupes.compareChunks, line 18.)


Todo

Add a secondary check for symlinks for safety.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring of fastdupes.delete_dupes, line 16.)


Todo

Try to optimize the ignores matching. Running a regex on every
filename is a fairly significant percentage of the time taken according
to the profiler.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring of fastdupes.getPaths, line 13.)


Todo

Find some way to bring back the file-by-file status text



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring of fastdupes.groupBy, line 26.)


Todo

Start examining the while handles: block to figure out how to
minimize thrashing in situations where read-ahead caching is active.
Compare savings by read-ahead to savings due to eliminating false
positives as quickly as possible. This is a 2-variable min/max problem.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring of fastdupes.groupByContent, line 16.)


Todo

Look into possible solutions for pathological cases of thousands
of files with the same size and same pre-filter results. (File handle
exhaustion)



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring of fastdupes.groupByContent, line 21.)


Todo

Rework the calling of stat() [https://docs.python.org/2/library/os.html#os.stat] to minimize the number of
calls. It’s a fairly significant percentage of the time taken according
to the profiler.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring of fastdupes.sizeClassifier, line 10.)





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   f
   


   
     		 	

     		
       f	

     
       	
       	
       fastdupes	
       

   



          

      

      

    

  

    
      
          
            

Index



 C
 | D
 | F
 | G
 | H
 | M
 | O
 | P
 | S
 | W
 


C


  	
      	CHUNK_SIZE (in module fastdupes)


  

  	
      	compareChunks() (in module fastdupes)


  





D


  	
      	DEFAULTS (in module fastdupes)


  

  	
      	delete_dupes() (in module fastdupes)


  





F


  	
      	fastdupes (module)


  

  	
      	find_dupes() (in module fastdupes)


  





G


  	
      	getPaths() (in module fastdupes)


      	groupBy() (in module fastdupes)


  

  	
      	groupByContent() (in module fastdupes)


      	groupify() (in module fastdupes)


  





H


  	
      	hashClassifier() (in module fastdupes)


  

  	
      	hashFile() (in module fastdupes)


      	HEAD_SIZE (in module fastdupes)


  





M


  	
      	main() (in module fastdupes)


  

  	
      	multiglob_compile() (in module fastdupes)


  





O


  	
      	OverWriter (class in fastdupes)


  





P


  	
      	print_defaults() (in module fastdupes)


  

  	
      	pruneUI() (in module fastdupes)


  





S


  	
      	sizeClassifier() (in module fastdupes)


  





W


  	
      	write() (fastdupes.OverWriter method)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		Welcome to Find Dupes Fast's documentation!


      


    
  

_static/file.png





_static/plus.png





_static/comment.png





_static/down.png





_static/up.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/up-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/minus.png





